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Abstract

This paper introduces a bottleneck game with �nite sets of commuters
and departing time slots as an extension of congestion games by Milchtaich
(1996). After characterizing Nash equilibrium of the game, we provide suf-
�cient conditions for which the equivalence between Nash and strong equi-
libria holds. Somewhat surprisingly, unlike in congestion games, a Nash
equilibrium in pure strategies may often fail to exist, even when players
are homogeneous. In contrast, when there is a continuum of atomless
players, the existence of a Nash equilibrium and the equivalence between
the set of Nash and strong equilibria hold as in congestion games (Konishi,
Le Breton, and Weber, 1997a).

1 Introduction

A bottleneck model is used in analyzing tra�c congestion during rush hours,
where commuters depart from their origins (e.g. their houses) to their destina-
tions (e.g. their workplaces). The simplest model was independently analyzed
by Vickrey (1969) and Hendrickson and Kocur (1981), where a continuum of
commuters depart from a single origin to a single destination connected by a
single road with continuous time horizon. Along the road, there is a bottleneck
in which a queue forms if the number of commuters exceeds the capacity of the
road at a given time, where the capacity is de�ned as the maximum number of
commuters that can pass through it in each slot. In these papers, commuters
decide on the departure time based on the trade-o�s between congestion and
their optimal arrival time. Players are assumed to have the same preferred
time of arrival and a speci�c form of the trip cost function. Subsequent papers,
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such as Smith (1983), Daganzo (1985) and Arnott et al. (1990), introduce some
heterogeneity of commuters.

In this paper, we de�ne a bottleneck game with a �nite set of departure
time slots. Each commuter has preferences on two arguments: her departure
time and the length of the queue in which she has to wait to pass through the
bottleneck. Our game is an anonymous game with congestion generated by a
queue structure without imposing a speci�c form of trip costs function. In this
sense, our model can be regarded as an abstract generalization of bottleneck
models in the aforementioned papers. Moreover, this abstract setup allows us
to interpret our model in a di�erent context other than tra�c congestion. For
example, consider a location choice problem along a river, in which residents
pollute the river while the river has an ability to abate pollution up to some
level (capacity) at each location of the river. We can allow residents' arbitrary
preferences over locations (such as scenic and/or convenient locations) on the
river, resulting in emergence of congested locations causing pollutions for down-
stream locations.

Mathematically, our model is also an extension of the congestion game by
Milchtaich (1996), which has following three properties:1 Anonymity (A), Con-
gestion (C) and Independence of Irrelevant Choices (IIC). First, A requires that
the payo� of each player depends on the number of players who choose each
action and not on the players' names. Second, C states that the payo� of each
player increases if another player who had chosen the same strategy chooses a
di�erent strategy. Finally, IIC states that the payo� of a player is not a�ected
even if another player that chooses a di�erent strategy from hers switches to
another strategy that is also a di�erent strategy from hers. In this game, Milch-
taich (1996) shows that a congestion game always has a Nash equilibrium in pure
strategies. Konishi et al. (1997a) shows that in the same model, any strictly
improving coalitional deviation from a Nash equilibrium results in another Nash
equilibrium, thus implying a congestion game also admits a strong equilibrium
that is immune to any strictly improving coalitional deviation. They also show
that if there is a continuum of atomless players, then the sets of Nash and strong
equilibria coincide with each other.

Our bottleneck game does not satisfy IIC, whereas the other two conditions
hold (though C applies in a strict sense only after a queue forms by exceeding the
capacity). Speci�cally, IIC would be violated in the case where a player who had
departed later then switched to an earlier departure time and thereby possibly
creating a longer queue for some of those players which she leaps over. With this

1The name "congestion game" is sometimes attributed to a class of games introduced by
Rosenthal (1973), who considers a situation in which players choose a combination of primary
factors out of a certain number of alternatives. Each player's payo� is determined by the sum
of the costs of each primary factor she chooses, while the cost of each primary factor depends
on the number of players who choose it, and not on the players' names. Rosenthal (1973)
proved that there always exists at least one pure-strategy Nash equilibrium by constructing a
potential function, which is later formalized by Monderer and Shapley (1996). However, these



di�erence, we �rst show that the equivalence between Nash and strong equilibria
under some conditions (Propositions 2, 3, and 4), show that a Nash equilibrium
may not exist even when players are Homogeneous (H) and other stringent
conditions such as Single-Peakedness (SP) and Order-Preservation (OP) on the
payo� function are satis�ed (Examples 4 and 5). With an even more stringent
condition, we show the existence of Nash equilibrium (Proposition 5). These
results are in stark contrast with the ones in Milchtaich's congestion games:
Nash equilibrium always exists, and it is hard to ensure the equivalence between
Nash and strong equilibrium due to coordination failures unless players are
homogeneous. In contrast, when players are atomless, we can establish both
the existence of Nash equilibrium and equivalence between Nash and strong
equilibria exactly in the same way as in congestion games (Proposition 6).

The rest of the paper is organized as follows. In Section 2, we de�ne our
bottleneck game with a �nite number of players. In Section 3, we provide three
su�cient conditions under which Nash and strong equilibria are equivalent to
each other. In Section 4, we show that our bottleneck game may not have a
Nash equilibrium in pure strategies even when players are homogeneous. We
also provide a positive result for the existence although the conditions are very
stringent. Section 5 introduces a bottleneck game with atomless players, and we
show that the existence of Nash and the equivalence between Nash and strong
equilibria all hold in this idealized environment. Section 6 concludes.

2 The Model with a Finite Number of Players

We consider a commuting road with a �nite number of departing time slots. Let
t = 1 ; :::; T be available departing time slots (t = 1 is the earliest). Each discrete
time unit can represent every minute or every �ve minutes, for example. Let
the set of departing time slots beT = f 1; :::; T g. Let qt−1 be the length of the
resulting queue at departing time slott� 1. Then, the length of the queue at time
slot t can be calculated asqt = max f 0; qt−1 + mt � qttime; qt−1+ q t ts.tcridepartinsomsi92 0 T8-345(is)-2ks:res~2(time)]TJ -173.811 -1Tf 96ed asq



Note that although qt = 0 holds irrespective of ~qt = 0 or ~qt < 0, these two
cases make some di�erence when an additional car arrives at time slott. In the
former case, a queue develops with an additional car while in the latter case it
does not develop. A strategy pro�le � is a Nash equilibrium if and only if for
all i 2 N and all t 2 T , ui(�i; q�i

(� )) � ui(t; qt(t; �−i)) holds. Before we present
a characterization of Nash equilibrium, we introduce some new terms.

Definition 1.

1. A single slot t is said to be abasin at � 2 T N if ~qt(� ) < 0 and ~qt−1(� ) � 0.

2. A single slot t is a single terrace at � 2 T N if ~qt(� ) = 0 and ~qt−1(� ) � 0.

3. A consecutive slots I = [ t1; t2] with 1



3 Equivalence between Nash and Strong Equi-
libria

A coalitional deviation from � is a pair of (C; �̂C) such that (i) C 6= ; , and
(ii) for all i 2 C, ui(�̂ ) > ui(� ), where �̂ = ( �̂C ; �−C). A strong equilibrium
is a strategy pro�le such that there is no coalitional deviation from � . In a
special case, we can show that Nash equilibrium is unique and is equivalent to
strong equilibrium. This is a unique result in our domain, since in the domain of
Konishi et al. (1997a), it is virtually impossible to exclude coordination failure:
that is, it is not easy to show the equivalence between Nash and strong equilibria.

Proposition 2. Suppose that there is a Nash equilibrium� with a unique
connected terrace [t1; t2], and ~qt(� ) < 0 for all t =2 [t1; t2]. Then, � is a strong
equilibrium.

We will prove this result with the following two claims.

Claim 1. Suppose that� is a Nash equilibrium, and that (C; �̂C) is a coalitional
deviation from � . Then, qt(�̂ ) � qt(� ) for all t 2 T , where �̂ = ( �̂C ; �−C).

Proof. Suppose not. Then, there exists at least one slott such that

qt(�̂ ) > qt(� ): (1)

If multiple slots are found, take the earliest such slot. Since the queue-length
at slot t strictly increases, there must be at least one player who deviates to slot
t at �̂ , i.e., mt(�̂ ) > mt(� ). Then, we can �nd at least one memberi of C who
deviates to �̂i = t from �i 6= t since only the members ofC can change their
strategies. Since the deviation is strictly improving, it must hold that



Claim 2. Suppose that� is a Nash equilibrium, and that (C; �̂C) is a coalitional
deviation from � . Then, no member ofC deviates to slotst such that ~qt(� ) < 0.

Proof. Suppose not. Then, there exists at least one memberi 2 S such that
~qt(� ) < 0 with t = �̂i. Letting �̂ = ( �̂C ; �−C), we consider two cases:

(i) ~qt(� ) < ~qt(� ) + 1 = ~qt(t; �−i) � ~qt(�̂ ) � 0;

(ii) ~qt(� ) < ~qt(� ) + 1 = ~qt(t; �−i) � 0 < ~qt(�̂ ):

Since the deviation is strictly improving, it must follow that

ui(t; qt(�̂ )) > ui(�i; q�i
(� )) :

In case (i), noting qt(� ) = qt(t; �−i) = qt(�̂ ) = 0, we obtain

ui(t; qt(t; �−i)) = ui(t; qt(�̂ )) > ui(�i; q�i
(� )) :

This shows that under � , player i could have switched to slot t and obtained
higher payo�. This contradicts that � is a Nash equilibrium.

In case (ii), we immediately obtain

0 = qt(� ) < qt(�̂ );

contradicting Claim 1. □

Now, we are ready to prove Proposition 2.

Proof of Proposition 2. Suppose that there is a coalitional deviation (C; �̂C).
By Claim 2, all members of C choose time slots in [t1; t2] under � , and no
member of C will not go out of [ t1; t2] under �̂ = ( �̂C ; �−C).

Denote by �t; t̂ the last slots which coalition members choose at�; �̂ , respec-
tively, i.e., �t = max f �i : i 2 Cg and t̂ = max f �̂j : j 2 Cg. We consider two
cases: (i) t̂ < �t and (ii) t̂ � �t.

In case (i), noting that
∣∣{i 2 C : �i 2 [t1; t̂]

}∣∣ � j C j� 1 and
∣∣{i 2 C : �̂i 2 [t1; t̂]

}∣∣ =
jC j, we have � qt̂ := qt̂(�̂ ) � qt̂(� ) � 1, since all slots in [t1; �t] belong to connected
terrace [t1; t2]. However, this contradicts Claim 1.

Then, we consider case (ii). First we have �qt̂ = 0, i.e., ~qt̂(� ) = ~qt̂(�̂ ),
since

∣∣{i 2 C : �i 2 [t1; t̂]
}∣∣ =

∣∣{i 2 C : �̂i 2 [t1; t̂]
}∣∣ = jC j by the de�nitions of

�t and t̂, and all slots in [t1; t̂] belong to connected terrace [t1; t2]. Moreover,
the deviation is strictly improving, and there must be member j of C such that
�̂j = t̂ and �j 6= t̂, which implies �j < �̂j = t̂. That is, player j delayed her
departure time. These suggest that she could have done that under� as well.



The above result relies both on the uniqueness of connected terrace and the
absence of single terraces in equilibrium. The next example shows that the
equivalence result may not hold if the conditions are not satis�ed.

Example 2. Let N = f 1; 2; 3; 4; 5; 6g and T = f 1; 2; 3; 4; 5g with capacity c = 1.
Players 1, 2, 3 and 4 are attached to time slots 1, 2, 4, and 5, respectively.
Players 5 and 6 have the following preferences, respectively:

u5(1; 0) > u5(2; 0) > u5(4; 0) > u5(5; 0) > u5(1; 1) > u5(2; 1) > u5(4; 1) > u5(5; 1) > others

u6(4; 0) > u6(5; 0) > u6(1; 0) > u6(2; 0) > u6(4; 1) > u6(5; 1) > u6(1; 1) > u6(2; 1) > others

There are two Nash equilibria: � = (1 ; 2; 4; 5; 1; 4) and � ′ = (1 ; 2; 4; 5; 4; 1). In
these cases ~q3 = 0. Only � is a strong equilibrium. □

An additional natural condition allows Proposition 2 to extend to the case
with multiple connected terraces. We say that the time slot t∗i 2 T is an
optimal slot for player i 2 N if ui(t∗i ; 0) > ui(t; 0) for all t 2 T ; t 6= t∗i .

Single-Peakedness (SP). Let player i's optimal slot be t∗i 2 T . Then, for all
i 2 N , and all t′ < t < t( t∗(



There is a Nash equilibrium � = (1 ; 1; 1; 3; 3; 2; 3), but ( C; �̂C) = ( f 6; 7g; (3; 2))





Again, this contradicts Claim 3. □

Proof of Proposition 4. Suppose that � is a Nash equilibrium, and that
(C; �̂C) is a coalitional deviation from � . We will derive a contradiction.

Step 1. Find t 2 T such that qt(�̂ ) < qt(� ). If there exist multiple such slots,
take the earliest one. Denote by [t; t] the connected terrace wheret belongs.
Note that some player i 2 C switches to �̂i 62[t; t] at �̂ .

Step 2. Find a player who deviates to slots in [t; t] at �̂ .
By Claim 5, there must be at least one such player. Among these players, let
the player who chooses the latest slot at ^� be player j 2 C. Note that player
j chooses�j at � which does not belong to [t; t], say [t′; t

′]. That is, player j

chooses�j 2 [t′; t
′] at � and �̂j 2 [t; t] at �̂ .

Step 3. Find a player who deviates to slots in [t′; t
′] at �̂ , and name playerk

the one among such players who chooses the latest slot at ^� .
Likewise in Step 2, such player must be found due to playerj's deviation from
[t′; t

′]. Let player k choose�k 2 [t′′;

�



Note that by H,

ui ( l +1) (�̂ i ( l ) ; q�̂ i ( l ) (�̂ )) = ui ( l ) (�̂ i ( l ) ; q�̂ i ( l ) (�̂ )) : (6)

Hence, from (3), (4), (5) and (6), we obtain

ui ( l +1) (� i ( l +1) ; q� i ( l +1) (� )) > u i ( l +1) (�̂ i ( l ) ; q�̂ i ( l ) (�̂ i ( l ) ; � � i ( l +1) ))

� ui ( l +1) (�̂ i ( l ) ; q�̂ i ( l ) (�̂ ))

= ui ( l ) (�̂ i ( l ) ; q�̂ i ( l ) (�̂ ))

> u i ( l ) (� i ( l ) ; q� i ( l ) (� )) :

However, this yields a cycle on the preference:

ui (1) (� i (1) ; q� i (1) (� )) < u i (1) (�̂ i (1) ; q�̂ i (1) (�̂ ))

< u i (2) (� i (2) ; q� i (2) (� ))

< u i (2) (�̂ i (2) ; q�̂ i (2) (�̂ ))

...

< u i (k ) (� i (k ) ; q� i ( k ) (� ))

< u i (k ) (�̂ i (k ) ; q�̂ i ( k ) (�̂ ))

< u i (k+1) (� i (k+1) ; q� i ( k +1) (� ))

= ui (1) (� i (1) ; q� i (1) (� )) ;

which is a contradiction. �

4 (Non)existence of Nash Equilibrium

Unfortunately, even under homogeneity, the existence of Nash equilibrium is
not guaranteed. In fact, the following simple example shows that there may not
be a Nash equilibrium even under H together with SP and another stringent
condition, Order Preservation (OP) introduced by Konishi et al. (1997b) that
investigates positive externality games (see below).

Order Preservation (OP). For all i 2 N , all t; t 0 2 T and all k; k0 2 Z+ ,

ui (t; k ) � ui (t0; k0) () ui (t; k + 1) � ui (t0; k0+ 1) :

The following Boundedness (B) condition together with OP enables us a
tractable representation of payo� functions.

Boundedness (B). Suppose that C holds. For all t; t 0 2 T with ui (t; 0) <
ui (t0; 0) there exists ktt 0 2 Z+ such that ui (t; 0) > u i (t0; ktt 0).

11



The following result is a variation of the result in Konishi and Fishburn
(1996).3

Fact. Under A, B, C, and OP, utility function ui has a quasi-linear represen-
tation. There is a vector vi = ( vi(1); :::; vi(T )) 2 RT such that for all t; t′ 2 T ,
and all k; k′ 2 Z+,

ui(t; k) � ui(t′; k′) () vi(t) � k � vi(t′) � k′:

Example 4. Consider the following three-player, three-time-slot game with
A, B, C, H, OP, and SP (capacity c = 1): v(1) > v(2) > v(1) � 1 > v(3) >
v(2) � 1 > v(1) � 2 > ::: Then, there is no pure strategy equilibrium. To see
this, �rst note at least one player chooses 1 in a Nash equilibrium. Let player 1
be such a player. Without loss of generality, player 2 weakly earlier departure
time than player 3. There are �ve cases: (i) (1; 1; 1) then a player moves to 3,
(ii) (1 ; 1; 2) then player 3 moves to 3, (iii) (1; 1; 3) then player 1 or 2 moves to 2,
(iv) (1 ; 2; 2) then player 2 or 3 moves to 3, and (v) (1; 2; 3) then player 3 moves
to 1. Thus, there is no Nash equilibrium in pure strategy. □

Therefore we seek a stronger concept, which we call symmetric single-peakedness
(SSP). Symmetric single-peakedness reects a player who values the trade-o�
between departing at her optimal slot and the queue-length at a one-to-one ra-
tio. That is, departing k slots later (earlier) than the optimal slot is equivalent
to facing an added queue-length ofk at her optimal slot. Formally,

Symmetric single-peakedness (SSP). For all i 2 N , let t∗i 2 T be an
optimal slot. Player i



Step 1 Set n′ = n.

Step 2 At slot t∗, put ( c + 1) players whenever possible, and proceed to Step
3. If n′ < c + 1, put all n′ players at slot t∗, and terminate.

Step 3 Update n′ with n′ � (c � 1), i.e., n′ ! n′ � (c � 1).

Step 4 Set � = 1.

Step 5 While t∗ � � > 0 and n′ > 0:

Step 5-1 At slot ( 0 < c



At this pro�le the queue-length vector q(� ) becomes

q(� ) = ( q1; :::; qt1−1; qt1 ; qt1+1; :::; qt� ; qt�+1; :::; qt2−1=2t�−t1 ; qt2 ; :::)

= (0 ; :::; 0; 1; 2; :::; t∗ � t1 + 1 ; t∗ � t1; :::; 1; 0; :::): (7)

SSP and OP imply

u(t1 � 1; 0) = u(t1; 1) = � � � = u(t∗; t∗ � t1 + 1)

= u(t∗ + 1 ; t∗ � t1) = � � � = u(t2 � 1; 1) = u(t2; 0):

First, note that player i with �i 2 [t1; t2] cannot improve by departing later
in [t1; t2], since the queue-length at switched slot,� ′

i is the same as in (7), so
player i is indi�erent between �i and � ′

i .
In addition, these players cannot improve by departing earlier in [t1; t2], since

the queue-length at switched slot,� ′
i , compared to (7), increases by one, so they

are worse o� by switching to � ′
i .

Next we consider the case when they depart later or earlier out of the con-
nected terrace. At � ′

i , they face a queue of length zero or one if� ′
i = t1 � 1 or of

length zero otherwise. If� ′
i = t1 � 1 and qt1−1(� ′

i ; �−i) = 0, player i is indi�erent
between � ′

i = t1 � 1 and �i. If � ′
i = t1 � 1 and qt1−1(� ′

i ; �−i) = 1, � ′
i = t1 � 1

is worse than �i. If � ′
i 6= t1 � 1, u(� ′

i ; 0) < u(t1 � 1; 0) = u(t2; 0), they making
worse-o�.

Player i in slot t1 �



In this case, using a similar argument as in case (A)-(i), no player has an
incentive to switch their slots.

(B) Suppose t∗ = 1. This is a variant of the case (A)-(ii), and it is shown that
no player has an incentive to switch their slots.□

Any property imposed on Proposition 5 seems required for a Nash equilib-
rium to exist. Indeed, once OP is dropped, then the existence of Nash equilibria
may not be guaranteed any more as the following example shows.

Example 4. Let N = f 1; 2; 3; 4g and T = f 1; 2; 3; 4g with capacity c = 1.
Players have the following preferences.

u(2; 0) > u(1; 0) = u(2; 1) = u(3; 0) > u(1; 1) > u(3; 1) > u(2; 2) = u(4; 0) > others:

In this example, H and SSP with optimal time slot t∗ = 2 are satis�ed, while OP
is not, sinceu(2; 0) > u(1; 0) but u(2; 1) = u(1; 0) > u(1; 1). Then, this example
does not admit any pure strategy Nash equilibrium. To see, �rst consider four
cases: (i) (1; 2; 2; 3) then player 4 moves to 1. (ii) (1; 2; 2; 1) then player 3 moves
to 3. (iii) (1 ; 2; 3; 1) then player 4 moves to 2. (iv) (1; 2; 3; 2) then player 3 moves



t 2 T . Note that we can de�ne ~q(� ) and q(� ) exactly in the same way as before:
~qt(� ) = qt−1(� )+ �t(� ) � c, and qt(� ) = max f ~qt(� ); 0g. By A, the payo� function
ui(t; � ) can also be written asui(t; � ) = vi(t; qt(� )).

Under the atomless player assumption, we will assume Schmeidler's technical
assumption.

Regularity (R) (Schmeidler, 1973). (i) For all i 2 I, and all t 2 T , ui(t; � ) is
continuous. Thus, all utility functions are uniformly bounded and there exists
a positive constant K such that

∣∣ui(t; � )
∣∣ < K for all i 2 I, t 2 T , and � . (ii)

For all � and all t; t′ 2 T , the set
{

i 2 I : ui(t; � ) > ui(t′; � )
}

is measurable.

Proposition (Schmeidler, 1973). Under A and R, there exists a Nash equilib-
rium in pure strategies.

A strategy pro�le is a strong equilibrium if there is no measurable subset
C � I with �(C) > 0 and a strategy pro�le �̂ of players inC such that ui(�̂i; �̂ ) >
ui(�i; � ) almost everywhere onC, where �̂ = (( �̂i)i∈C ; (�i)i=∈C). We will impose
the following congestion condition.

Congestion (C) vi(t; qt) is strictly decreasing in qt for all t 2 T and all qt 2 R+.

The main result of this section is:

Proposition 6. Consider an atomless game. Under A, C, and R, the sets of
Nash and strong equilibria coincide with each other.

Proof. Suppose that� is a Nash equilibrium while it is not a strong equilibrium.
Then, there exist a coalition C with �(C) > 0 and a strategy pro�le �̂ for C
such that ui(�̂i; �̂ ) > ui(�i; � ), where �̂ = (( �̂i)i∈C ; (�i)i=∈C). Note that �̂i =2
f t′ 2 T : qt′ (� ) � 0g holds for all i 2 C. It is because playeri would have moved
under strategy pro�le � , contradicting � 's being a Nash equilibrium, otherwise.
Thus, f t′ 2 T : qt′ (� ) > 0g � f t′ 2 T : qt′ (�̂ ) > 0g.

Assume now that there is a time slot t 2 f t′ 2 T : qt′ (�̂ ) > 0g with qt(�̂ ) >
qt(� ). Take the earliest time slot of this kind t. Then, C \ f i′ 2 N : �̂i′ = tg 6= ; .
Let i be such a player. Since� is a Nash equilibrium, vi(�i; q�i

(� )) � vi(t; qt(�̂ ))
must hold. This is a contradiction with C 's being pro�table deviation. Thus, for
all t 2 f t′ 2 T : qt′ (�̂ ) > 0g, qt(�̂ ) � qt(� ) holds. Sincef t′ 2 T : ~qt′ (� ) > 0g �
f t′ 2 T : ~qt′ (�̂ ) > 0g, qt(�̂ ) = qt(� ) holds for all t 2 f t′ 2 T : qt′ (� ) > 0g =
f t′ 2 T : qt′ (�̂ ) > 0g. Hence, a deviation C with �̂ cannot improve on Nash
equilibrium � . This implies �



from each other in the �nite case. Somewhat surprisingly, the presence/absence
of single-terraces (time slots that are chosen by the same number of players as
the capacities) can alter the structure of the equilibria of the bottleneck game.
This is because there is an asymmetry between an increase and a reduction in
population at single-terraces: the former reduces payo�s while the latter has no
e�ect on them. In contrast, in an atomless bottleneck game, we need essentially
no condition for the result. There is no such asymmetry: players can simply
choose the most preferable time slot given the queue structure without a�ecting
the queues. This is why we can recover the nice equivalence result between Nash
and strong equilibria as in Konishi et al. (1997a).

Thus, whether the tra�c bottleneck model started by Vickrey (1969) would
provide us useful insights or not depends on how we interpret the "atomless"
assumption of the model. If we accept this assumption as an reasonable ap-
proximation of the real world, we can enjoy nice properties and rich results of
the model. However, if we question the legitimacy of atomless players, then we
need to su�er from the ill-behaved model coming from �nite problems.
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