
!

!

!

!

!

!

!

"#!"$$%&'$!($!)*+%,,%-!./0/12'!

!

 Michael Elliot

School of Arts and Sciences

Boston College, Chestnut Hill, MA

"03$4(1$5 An attempt to design and implement an entire AIBO to be Robocup

ready proved a challenging, and rewarding experience. Due to the large scale

time requirements and time consuming technical issues that had to be dealt with,

my experimentation was cut short.

 Successes, however, include the creation of a vision system and of an!

omni-directional walking system that could be used to achieve the ultimate goal

of playing soccer. These systems are in many ways a final product in

themselves—typically teams are separated into groups which complete each

sub-model in the dog, giving them freedom to explore many options. In addition,

I had no starting point and had to learn the OPEN-R programming environment

on my own, and thus, development required a significantly greater amount of

time as compared to a situation where there was already a working system with

knowledgeable people there to oversee.

6!7#$4/-21$8/#!

!

new programming target (i.e. Sony’s AIBOs) and develop what often ten

graduate students would tackle together.

 The systems implemented involve both walking, object recognition and

localization. These designs followed those of the previous big-leaguers in the

Robocup tournaments5!!Typically my goal was to capture the ground breaking

designs, and implement the simplest versions of those designs.! Even with big

eyes, my goal was never to truly be competitive in the Robocup, but instead to

learn the intricacies of autonomous agents and distributed learning.

Unfortunately, distributed learning was never achieved due to the lack of time

and help from additional team members.

!

9!:;%!./0/$

The ERS-220 can be seen in Figure 1. As show in the exterior shots, the AIBO

robot is designed with joints similar to that of actual living dogs. Each leg

consists of 3 joints which can be accessed via primitive commands in the code

running by the robot. The primitive addresses are available in the Model

Information guide provided by Sony at their OPEN-R Website. The robots come

with a single in-face camera which is accessible in a similar fashion. All details of

other needs, such as buttons or foot sensors, are found in the Model Information

guide and can be accessed using the same primitive commands.

Figure 1 – ERS-220 Model Appearance

!

9*6!<4/,4(&&8#,!=#>84/#&%#$

In order to compile OPEN-R programs, a Linux based compiler must be used.

These are available through the OPEN-R website provided by Sony. The trick,

however, lies in the fact that the floppy-to-memory-stick converter is Windows

based (note that it will not work with a dual processor system!). Therefore we

must utilize Cygwin for general implementation situations. There are Cygwin

binaries available at the website. Cygwin can be obtained at www.cygwin.org.

 A Unix or Linux system can be used to implement the code as well, and

instructions to do so are available on the OPEN-R Website. In this case an FTP

server can be utilized to transfer code over a wireless network and then the robot

can be remotely rebooted. This method is possible because on boot the robot

copies the code into memory, leaving the memory stick alone. In order to do this,

the FTP server, which fortunately is provided by Sony, must be running at all

times. See appendix C for more information.

!

9*9!<4/,4(&&8#,!?/-%@

By nature of being an autonomous agent, the ERS-220 cannot rely on an

operating system to perform the necessary tasks required to keep track of the

state of the robot. To accomplish this and maintain a multi-threaded approach,

each defined object runs concurrently. A roundurrem Bu FTP

implemented and what types of inter-object communication are needed, is

necessary in order to better maintain and configure the necessary stub.cfg and

connect.cfg files.

9*A!?(B%C8@%3!(#-!1/&'8@8#,

The compiling of the code for the robots is somewhat detailed. This is mostly

because the target processor isn’t the typical one. The compiler is located at

/usr/loca/OPEN_R_SDK/bin/. Also a binary maker must be run from

/usr/local/OPEN_R_SDK/OPEN_R/bin/mkbin. In general, these Makefiles are of

the plug and play nature. They can also set up a directory structure that may be

of benefit. Appendix A contains a very fine example that automates much of the

required. Memory protection prevents objects from touching memory used by

other objects through allocation of memory in only blocks of 4096 byte chunks.

Although this can lead to a decrease in memory utilization, it obviously prevents

nasty memory related bugs.

 The wireless communication settings on the AIBO do not utilize DCHP.

DCHP allows a host to obtain an IP address and all other needed information

such as default gateway and default Mask, dynamically at startup. For reasons

that I am unaware of, the AIBOs must have a static IP address and have all other

network configuration settings known at boot. I was fortunate to obtain not only

static wireless information, but also an IP address for each robot. See Appendix

B for details of what the wlanconf.txt file looks like. If this is not perfect, the dogs

will not work on the wireless network.

 The last thing to do before running is to edit the OBJECT.CFG file located

in /OPEN-R/MW/CONF/ directory. This file contains all of the objects to run.

These objects will be run regardless if they do not require inter-object

communication. A nice thing to do here is include an FTP server so that it can be

utilized to run reboot commands remotely and other such things. The objects

must be placed into /OPEN-R/MW/OBJS/. Further details are available in the

Open-R SDK Programmer’s Guide provided by Sony.

!

A!<4%>8/23!F/4B3!

Robocup was started to provide a common interest to merge what seemed to be

a variety of drifting, inter-dependant Computer Science Topics.!!These topics

include Robotics, Distributed Computing, Artificial Intelligence, and Computer

Vision.!!Thus a common ground and common playing field, robotic soccer, was

selected as the method to further artificial intelligence, robotics, distributed

computing, and computer vision. At first there was just a simulation league,

where artificial intelligence and distributed computing was the focus. Here

eleven separate threads of execution, typically coming from eleven separate

computers were connected to the ‘soccer server’ in a client server fashion. The

realism of this simulation league continues to grow to allow for coach interaction

using predefined commands. In addition there are three robot (small, medium,

and large) leagues. However, the nature of this league is inherently unfair in that

robotic design is left up to the teams, resulting often in largely better teams in

some cases.

entire league. Since 1998 and the release of OPEN-R by Sony, he has had

groups of students doing brilliant work and improving elements of the team each

year. It is their Vision System’s design (from 2002) that I attempted to

implement. There are many features of their design which make later, higher

level work much easier. More or less, the bulk of the work takes place at a lower

level, which feeds the decision processes with nice structures that make decision

making faster, and more precise.

 Although CMU is always a front-runner in Robocup competition, University

of New South Wales of Sydney Australia has been a force in the development of

faster walking mechanism for the dogs—they are inherently slow, easily to push

over, and generally difficult to program. Their improvements and design for the

2000 Robocup are my basis for implementation of walking code. Their use of

omni directional methods provides a remote like interface for the artificial

intelligence portion of the system and tries to minimize its own effect on the

vision system, which is attached to an often bobbing head.

 Typically teams implement a variety of kicking methods including a header

 As Robocup has grown, the 4-legged league has placed humans at the

controls of one team of AIBOs, to determine just how far the artificial intelligence

teams were coming. Inter-squad competition seemed to indicate an

improvement in play, but to use humans gives a somewhat consistent point of

comparison. In 2001 the humans were defeated for the first time by the artificial

intelligence provided by the winning team.

 The goal of Robocup is to not only push new research and extend the field

of Computer Science through competition, but its ultimate goal is to compete with

actual humans in a real game of soccer with large humanoid robots. Although

the field of robotics is the lagging section of the many fielded research of

Robocup, it is hoped that these ventures in artificial intelligence, distributed

decision making, and vision, will lead to faster understanding of what is needed

from the robots in order to be successful and also to determine how to teach

robots to work as in groups, that do not have a ‘master’ dog dictating what needs

to be next. These ideas create human like abilities in each robot, and keep

dependencies as low as possible. These abilities can then be used in other

areas, as needed, to aid in better lifestyles for all.

!

!

)!?H!8&'@%&%#$($8/#!(#-!%I'%48%#1%3

Following is the general principles behind these systems, as well as my

experiences during their creation.

)*6!J*K84%1$8/#(@L!4%&/$%*@8B%L!@/1/&/$8/#

A fast, reliable, and remote-like implementation of a Motion system was the

reason University of New South Wales was able to win all competitions in 2000

at the 4-legged championships. The great improvement in speed comes from

looking at the AIBO’s legs as a circular motion, creating a rectangular locus that

can be modeled using a few formulas. With such a design it is possible to

maintain steady, fast speeds simply by maintaining the size of the locus, and

traversing at the same steady state. Furthermore, this design gives the ability to

raise the legs off of the ground

forward at eighty five millimeters per step, with zero motion to the left, and zero

motion in a circular fashion (i.e. the rotation of the entire robot).!

 In order to verify that these parameters and system worked, I had to

create a way to access the module in the robot, and thus created an extension to

the telnet server that was written by Sony and freely distributed. I could then

simply play and verify all of the things that University of new South Wales

claimed were true about this design. The difference in walking speed is

considerable, as I raced the Sony walking code with that of this team at the same

gear speeds, and found it to be nearly twice as fast.

!

)*9!M838/#!(#-!F/4@-!?/-%@!

As previously mentioned, I used the method described in CMU’s team paper

from 2002. Vision is a multiple step process that inherently requires much of the

robot’s processing time. It is this time that I was worried about utilizing too much

of.

 As inputs we get eighteen frames per second from the robot. The first

step in the vision process is segmentation. On each pass of a color, the highest

level bits are used to look up a related color in a lookup table that allows for

variance in color and in particular for lighting differences. The lookup table is 65

kilobytes big, maps each color to a more generic one and was directly borrowed

from CMU’s work. The resulting image is stored for possible later use. As

lookups are done, tracks of runs of similar colors are kept track of and recorded

into an array with an x and y, and an ending x. The objects also contain a parent

node. This makes for easier and faster connection of components. Starting with

a disjoint forest of nodes (these are the individual runs previously calculated) with

the parent of each node being itself, adjacent rows are joined.!!The actual

parents must be determined if there is a case where a row is connected from

multiple locations. Figure 3 shows this in better detail.!!The parent nodes are

then sorted based on size and color for later use. In addition, once this is

performed, the regions that weren’t of exact matches needs to be merged, in the

interest of perhaps locating an actual object like the ball, goal, or landmark. I

merged on the assumption that the resulting object had a density of .89.!!!

!

Figure 3 – Visualization of Region Creation

 Using these regions we can then begin to locate objects and calculate

their distances. The ball is detected by scanning through the pink (The ball in

actual Robocup play is yellow). regions and determining which ones have the

greatest chance of being the ball. First and foremost the ball must be on the

ground and no more than five degrees above the robot’s head. It also must be

surrounded by the field. Anything that is not sufficiently wide, tall, or large

enough is disgarded. With these elements in mind the best option in the region

structure can be chosen. The known size of the ball can then be used to

calculate how far from it the robot is. The kinematics of the robot can also be

used to decide what angle from the robot the ball is. To test up to this point I

created a ball tracking piece of code that allows the head to look around for the

ball until it is found and then maintains focu

and blue nature. We want to look at

position, and then with that information, could add each other to the world model.

However, opponents must be located purely through a robot’s own vision. Should

a robot lose track of the ball for more than 5 seconds it can request the ball’s

location from the other robots. From them the average of the other’s vision can

be assumed, until the ball is located yet again. Each time an opponent is

viewed; its position is translated into the world model and updated. There is no

attempt at guessing the next position.

 Higher level decision making has not been implemented at the current

time, as this world model system has not been tested to date. However,

motivation can easily be placed on the robot to see the ball and kick it into the

goal. This is the target work to be accomplished before presentation time.

N! O2$24%!F/4B!

!

There is obviously much work left to do to actually have a Robocup ready team.

My vision includes addressing many of the soccer issues. It would also rely

merely on a shared vision of the world. With the wireless capabilities of the

robots, their own view of the world can be shared and therefore an agreed upon

world can be obtained. The dogs could then easily make their own decisions,

assuming they all follow the same protocol for decision making.

goalie. This way you can never be sure where the attack will come from and

‘guarding’ one dog or path will not suffice to prevent scoring opportunities.

 Soccer, fortunately, is a simple game. Should I have had time to

implement this area, I feel that I would have had tremendous success as my

understanding of the fundamentals of soccer is high. Perhaps if I were working

with more people implementing these robots, a higher level of excitement may

have occurred.

 On the topic of the world model, it is possible to guess at the future

locations of opposing robots. This could be guessed at by looking at the robot’s

current position and velocity. What remains to be seen is if there is a reliable

way of calculating those parameters from an already moving robot’s camera.

This could aid in the decision making process. In addition, before making an

action, the dogs could verify the location of an opposing dog, and have a back-up

plan be ready if the first one does not look like a good option. However, the

amount of time required to propagate the necessary information may be too great

to accomplish. As processors continue to speed up, perhaps last second

decisions can be made, like those of an actual human soccer player.

 One of the largest slow-downs occurred as a result of not having

debugging tools that many of the other teams utilize. University of New South

Wales has a beautiful Java graphical user interface (GUI) that shows the state of

the robot, what it is seeing, what its model of the world looks like, what it is trying

to do with the ball next, and even more. Of course I would have loved to have

been able to use this GUI, but clearly this would have forced me to use their

exact system of representation. This limitation would have put more work on me

than I already had, so instead I chose an original route. For future work, I think a

large debugging tool, preferable written in Java (to allow for cross platform use)

would be highly useful5!!This also means standardizing many of the models and

outputs for each internal module of the robots.

A simple telnet approach where various pieces of information can be printed

would have been another useful debugging tool. This is clearly a much simpler

approach than the GUI approach. It could only show string representations, but

from a realistic point of view for a single worker, this may be a more realistic.!

P! <4/0@%&3!(#-!:%1;#81(@!7332%3!

The fact is that without years of development not only with the robots and their

code, but also of tools, I was at a large disadvantage from the beginning. I faced

a new programming environment that is unknown by everyone at Boston

College. My voyage was therefore somewhat lonely, but when technical issues

came up, it became difficult to remain focused on implementation of other things,

when nothing seemed to work correctly. Issues faced ranged from IP issues,

DCHP issues, wireless issues, compiler corruption issues, and general issues

with Cygwin (Linux embedded into Windows).

 The hardest part was getting use to and using the inter-object

communication model used in the robots. Without an operating system, the

robots were designed on a threaded model. The major drawback is that each

object is only capable of communicating with other objects through shared

memory and a system of event driven activities. Without good documentation on

this (it was not available until December), trying to do multiple objects was

impossible.

 Some of the technical issues that had to be addressed involved the

transfer of code to the robot itself. The time consuming fift

Boston College. The issues addressed through this journey are documented and

available so that others may enjoy the fruits of my labors through a challenging

and sometimes depressing journey.

Q! D/#1@238/#3!

I feel that my work, given the stresses I faced, were remarkable. All completed

modules show signs of proper implementation, and thus I feel that with sufficient

time I could have developed a system that would have been respected and could

have been entered into the Robocup competition. Furthermore, my

understanding of a wide range of robotic and real time issues has grown, and I

too as a person have grown through facing what often seems as an impossible

mission.

.%C%4%#1%3

[1] J. Bruce, T. Balch, and M. Veloso. CMVision.

(http://www.coral.cs.cmu.edu/~jbruce/cmvision/).

[2] J. Bruce, T. Balch, and M Veloso. Fast and inexpensive color image

segmentation for interactive robots. (http://www.ri.cmu.edu/cgi-

bin/tech_reports.cgi)

[3] Pedro Lima, Tucker Balch, Masahiro Fujita, Raul Rojas, Manuela Veloso, and

Holly A. Yanco. Robocup 2001: A report on research issues that surfaced during

the Competitions and Conference. IEEE Robotics and Automation Magazine,

June 2002

[4] Bernhard Hengst, Darren Ibbotson, Son Bao Pham, Claude Sammut.

Omnidirectional Locomotion for Quadruped Robots. School of Computer Science

and Engineering, University of New South Wales.

[5] Dalgliesh, J. and Lawther, M. (1999). Playing soccer with Quadruped Robots.

Computer Engineering Thesis, University of New South Wales.

[6] Hornby, G. S., Fujita, M., Takamoto, T., Hanagata, O. Evolving Robust Gaits

with Aibo. IEEE International Conference on Robotics and Automation. Pp.

3040-3045.

[7] William Uther, Scott Lenser, James Bruce, Martin Hock, and Mauela veloso.

[9] Maayan Roth, Douglas Vail, and Manuela Veloso. A World Model for Multi-

"''%#-8I!"!R!=I(&'@%!?(B%C8@%!E8$;!;8,;@H!(2$/&($%-!'4/1%33!

Copyright 2002 Sony Corporation

Permission to use, copy, modify, and redistribute this software for
non-commercial use is hereby granted.

This software is provided "as is" without warranty of any kind,
either expressed or implied, including but not limited to the
implied warranties of fitness for a particular purpose.

PREFIX=/usr/local/OPEN_R_SDK
INSTALLDIR=../MS
CXX=$(PREFIX)/bin/mipsel-linux-g++
STRIP=$(PREFIX)/bin/mipsel-linux-strip
MKBIN=$(PREFIX)/OPEN_R/bin/mkbin
STUBGEN=$(PREFIX)/OPEN_R/bin/stubgen2
MKBINFLAGS=-p $(PREFIX)
LIBS=-lObjectComm -lOPENR
CXXFLAGS= \
 -pipe \
 -O2 \
 -I. \
 -I$(PREFIX)/OPEN_R/include/R4000 \
 -I$(PREFIX)/OPEN_R/include
TARGET=robot.bin
MSDIR=/flash
INSTALLOBJS=$(TARGET) \
 ../actuators/actuator.bin \
 ../sensors/sensor.bin \
 ../SoundPlay/SoundPlay/sndplay.bin \
 # ../ImageViewer/JPEGEncoder/jpegen.bin
INSTALLMYCFS=../conf/camera.cf \
 ../conf/mycolor.cf \
 ../conf/*.cdt
INSTALLCFGS=connect.cfg object.cfg designdb.cfg

When OPENR_DEBUG is defined, OSYSDEBUG() is available.

#CXXFLAGS+= -DOPENR_DEBUG

.PHONY: all install clean

all: robot.bin

installms: all
 (cd ../actuators; ${MAKE})
 (cd ../sensors; ${MAKE})
 (cd ../PowerMonitor/PowerMonitor; ${MAKE})
 # (cd ../ImageViewer/JPEGEncoder; ${MAKE})
 cp -r $(PREFIX)/OPEN_R/MS/WCONSOLE/nomemprot/OPEN-R
$(MSDIR)
 cp $(INSTALLOBJS) $(MSDIR)/OPEN-R/MW/OBJS/
 cp ../PowerMonitor/PowerMonitor/powerMonitor.bin $(MSDIR)/OPEN-
R/MW/OBJS/POWERMON.BIN
 cp $(INSTALLCFGS) $(MSDIR)/OPEN-R/MW/CONF/
 cp wlanconf.txt $(MSDIR)/OPEN-R/SYSTEM/CONF/
 mkdir -p $(MSDIR)/OPEN-R/APP/CONF/
 cp -r ../SoundPlay/SoundPlay/wav $(MSDIR)/
 cp $(INSTALLMYCFS) $(MSDIR)/

%.o: %.cc
 $(CXX) $(CXXFLAGS) -o $@ -c $^

robot.bin: ShooterStub.o Shooter.o blob.o LoadTbl.o LoadCDT.o
CameraParam.o Robot.o robot.ocf
 $(MKBIN) $(MKBINFLAGS) -o $@ $^ $(LIBS)
 $(STRIP) $@
 gzip $@ && mv $@.gz $@

install: robot.bin
 cp robot.bin $(INSTALLDIR)/OPEN-R/MW/OBJS/CAMERA.BIN

clean:
 rm -f *.o *.bin *.elf *.snap.cc
 rm -f ShooterStub.cc ShooterStub.h def.h entry.h
 rm -f $(INSTALLDIR)/OPEN-R/MW/OBJS/CAMERA.BIN

ShooterStub.cc: stub.cfg
 $(STUBGEN) stub.cfg

Shooter.o: Shooter.cc Shooter.h ../lib/Robot.h
 $(CXX) $(CXXFLAGS) -c Shooter.cc

Robot.o: ../lib/Robot.cc ../lib/Robot.h ../include/DRX900.h ../include/myfatfs.h
../lib/LoadTbl.h ../lib/LoadCDT.h
 $(CXX) $(CXXFLAGS) -c ../lib/Robot.cc

LoadTbl.o: ../lib/LoadTbl.cc ../lib/LoadTbl.h

 $(CXX) $(CXXFLAGS) -c ../lib/LoadTbl.cc

LoadCDT.o: ../lib/LoadCDT.cc ../lib/LoadCDT.h
 $(CXX) $(CXXFLAGS) -c ../lib/LoadCDT.cc

CameraParam.o: ../lib/CameraParam.cc ../lib/CameraParam.h
 $(CXX) $(CXXFLAGS) -c ../lib/CameraParam.cc

blob.o: ../lib/blob.cc ../lib/blob.h
 $(CXX) $(CXXFLAGS) -c ../lib/blob.cc

