
Extensions to Polyphonic C#
Joel Barciauskas
Professor Edward Sciore, Advisor
Boston College
Computer Science Department

2

Abstract

Synchronization mechanisms in concurrent programming have progressed very

slowly over the years. Semaphores and monitors are still the most widely used tools for

solving these problems. We discuss in this paper a new type of synchronization

mechanism called “chords.” Previous papers have discussed a few areas in which chords

are well-suited to replace semaphores and monitors, including asynchronous method

execution and return value retrieval and the reader-writer problem. We will attempt to

solve a number of other traditional synchronization problems using chords, and make

suggestions as to possible extensions to the rules governing chords that would make them

even more useful.

Introduction: What Are “Chords”?

In order to understand this paper, one must have a reasonable understanding of

how chords function. We will be using as a reference the language CZ, or “Comega.”

Comega is a language developed by researchers at Microsoft Research that presents a

concrete implementation of, among other experimental language features, chords. The

Comega implementation of chords introduces two major pieces of syntax to a language.

The first is the creation of an “async” keyword. The async keyword is a new return type

for methods and essentially ensures that the current thread will not block waiting for the

method to return anything. In effect, an async method returns instantaneously. An

example of a class with a simple async method looks like this:

public class ClassUsingAsync
{

public async m1();

when m1()
{

3

4

the calling threads. After all, how would we decide which one to interrupt? Instead, a

new thread is created, or an available thread is drawn from a thread pool, depending on

the implementation.

It is also possible for a chord to return a value if one of the methods in the chord

is synchronous. That is, only one method may have a return type other than “async.”

When a thread makes a call to the synchronous method in a chord, it blocks until the

chord is completed, at which point the body of the chord is executed in the same thread of

the synchronous method. This is important to note: a chord that contains a synchronous

method does not result in the creation of a new thread. Building on the previous

example, here is a class with a synchronous chord:

public class ClassUsingAsyncVersion3
{

public async m1();
public async m2();

when m1() & m2()
{

//method stuff
}

public int m3() & m1()
{

return 0;
}

}

If a thread makes a call to m3() without any previous calls to m1() by any other threads, it

will block and wait to be notified. It will be notified when another thread makes a call to

m1() and the chord is complete, and the thread that called m3() will then execute the code

in the body of the chord, in this case simply returning “0.”

There is one final important rule to consider about the behavior of chords. We

must decide what to do when there is more than one possible chord that could be

5

executed in the queue, but the two chords share a method. For example, in the third

version of the ClassWithAsync, as seen above, m1() is part of two different chords. In

the program above, it might be the case that there are calls to m2() and m3() already

made, and a call to m1() completes two chords at the same time. We must decide which

chord executes and which must wait for another call to the shared method. In the

original Polyphonic C# paper, it is stated that generally this decision will be non-

deterministic, i.e. one of them will be chosen at random, and you should not write your

program to rely on a specific behavior. A major subject of this paper is an alternative to

this non-determinism that might make chords more useful.

Further Examples

Some kinds of problems that can be solved very elegantly using chords. For

instance, a single-cell buffer might be implemented using chords like this:

public class OnePlaceBuffer {
 private async empty();
 private async contains(string s);

 public OnePlaceBuffer() {
 empty();
 }

 public void Put(string s) & empty() {

6

 }
 }

 static async Consumer(){
 while(true){
 string s = b.Get();

 Console.WriteLine("Consumed?{0}",s);
 }
 }

 public static void Main() {
 Producer();
 Consumer();
 }
}

This is a very simple example in which a single string is held by the object on a call to

Put(), and returned upon a call to Get(). A call to Get() without any item in the buffer

blocks until a call to Put() is made, and a call to Put() against a full buffer blocks until a

call to Get() is made. The object notifies the queue that a Put() operation has completed

and that a call to Get() may be completed by posting the contains() message on the queue.

The contains() message is used not only to notify a previous Get() call, but also as a way

of storing the string parameter. The queue may be used to save state this way and

provide synchronized access to data without use of a shared variable.

Another common task that can be completed easily with chords is an

asynchronous callback situation. The idea is that a call is made to an asynchronous

method, and then later a method is called to block and wait for the retrieval of the result

of the computation. This is very useful in situations where a complex computation might

be made, or a long read or write operation is being performed. As one might imagine

given the presence of the “async” keyword in chords, this is very easy:

public class AddAsyncClass {
public async asyncAdd(int i, int j);
public async addComplete(int n);

when asyncAdd(int i, int j)
{

7

int n = i+j;
addComplete(n);

}

public int getVal() & addComplete(int n)
{

return n;
}

}

public class Demo {

 public static void Main() {
 AddAsyncClass add = new AddAsyncClass();

add.asyncAdd(2, 2);

//some code you want executed

int result = add.getVal();
 }
}

The second message, addComplete, saves the result of the computation as a parameter

within message on the queue, much as the contains() method does in the previous

example. We then use getVal() to retrieve that message and its stored parameter later.

Semaphores in Chords

Another point that should also be made is that any solution that can be achieved

using semaphores can be imitated using chords. This is proven by the fact that we can

write our own chord-semaphore class like this,

public class Semaphore {
public async Signal();
public void Wait() & Signal() {}

}

public class Demo {
 static async task(int n, Semaphore s);

 public static void Main() {
 Semaphore s = new Semaphore();

 task(1,s);
 task(2,s);

 for(int i=0; i<10; i++) {
 Console.WriteLine("Main");

8

 Thread.Sleep(10);
 }
 Console.WriteLine("Waiting for tasks to finish");
 s.Wait(); // wait for one to finish
 s.Wait(); // wait for another to finish
 Console.WriteLine("both tasks finished");
 Console.ReadLine();
 }

 when task(int n, Semaphore s) {
 for(int i=0; i<10; i++) {
 Console.WriteLine("Task {0}",n);
 Thread.Sleep(n*10);
 }
 s.Signal(); // say we've finished
 }

}

We see the incredible simplicity of the implementation of a Semaphore class here, as well

as a simple program that makes use of it. The client code makes a couple of

asynchronous calls, and waits for the threads the tasks are spawned in to signal their

completion. We are, however, much more interested in novel solutions that differ

significantly from the semaphore-based solutions that have already been established.

The “async” Keyword and Thread Creation

In C#, starting a new thread is a fairly complicated affair. It requires writing a

delegate that conforms to the ThreadStart delegate format. This format is,

public delegate void ThreadStart();

The class c we want to control the new thread must therefore have a method that takes no

parameters and has a void return type. It might look something like this,

public class ThreadController
{

private int num;

public ThreadController(int x)
{

num = x;
}
public void threadStart() { //do something with ‘num’ }

}

9

We create a new Thread instance by declaring,

ThreadController tc = new ThreadController(3);

10

Instead of requiring a constructor and a private variable to hold the value passed to the

constructor, we can define parameters for the async method and pass values and objects

to the new thread that way.

Furthermore, in addition to being the ability to eliminate the “new Thread(new

ThreadStart())” ugliness, there is another interesting facet of this code. In the above

definition of ThreadController, the class definition requires that a new thread is created

on every call to threadStart(). In the previous definition, a call to threadStart() might be

as a result of a new thread being created with threadStart as the ThreadStart delegate, or it

might just be called arbitrarily by a client. If there is some reason we want to guarantee

that a new thread is created on every call to a particular method, we must use the async

keyword solution. The async solution can also be modified so that the client code has the

option of using the functionality of the async method without the expense of spawning a

new thread, like this:

public class ThreadController
{

public async threadStart() { nonThreadStart(); }
public void nonThreadStart() { //original async code here }

}

We can put the same functionality in two different method headers when we want to give

a client of a ThreadController instance the ability to decide if it wants to spawn a new

thread. We can achieve this by making an asynchronous wrapper for another

synchronous method. The names used in this example are a little ambiguous – in reality,

the nonThreadStart() code is being executed in a new thread when it is called from

11

12

In order to stop the thread, we add a stop() method to the BallThread class with

access to the private boolean variable “go,” in which we simply set the variable to false.

The while loop will fail on the next test and the thread will exit. It is a very simple and

straightforward multi-threaded program.

We can modify this program to use the async keyword and eliminate the Thread

library code very easily. We simply redefine the start method as async rather than void.

We can then eliminate the two lines,

t = new Thread(new ThreadStart(ball.start));
t.Start();

And replace them with a direct call,

ball.start();

These sections are bolded and italicized in Appendix A, which contains the code for the

implementation of the BouncingBallForm class. The chord solution works, and is

marginally more sensical than the regular C# version, but is not really a significant use of

the features presented with chords in Comega. Instead of using a variable to maintain

state and control the thread, we want to try to take advantage of the chord mechanism to

achieve the same functionality.

In order to do this, we will need to add a few more private methods to the

BallThread class. First of all, we are going to eliminate the while loop and the boolean

“go” variable. Instead, we will use three chords to control the movement of the bouncing

ball. The chord definitions will be,

private void move() & checkStop()
public async stop() & checkStop()
private void move() & killMove()

13

The first chord will perform the normal movement of the ball, updating its position and

calling the paint() method to redraw the ball in its new position, the second chord stops

the looping of the first chord, and the last chord is used to clear the message queue of the

spare move() message that remains after the ball’s movement has been stopped. One

might also wonder what happened to the start() method amongst all these chords. In

order to eliminate the state variable, and by extension, the while loop, from the program,

we instead use recursive method calls. However, we do not want to recursively call a

method defined as async, because that would incur the overhead of creating a new thread

on every single call. Instead, we want to make a single async call that then starts a

normal, single-threaded recursive loop. The move() method is the recursive call we will

make from start(), and we will also post a checkStop() message, which makes sense in

that it is possible to have the toggle button clicked twice fast enough that start() and

stop() are called in succession and we never get around to actually moving the ball.

Let’s take a look inside the move() & checkStop() chord, and explain exactly

what the purpose of the checkStop() message is.

private void move() & checkStop()
{

checkStop();
ball.move();
ball.paint();
Thread.Sleep(5);
move();

}

The middle three method calls are familiar; they are lifted directly from the C# version of

our program. The final move() message is the recursive loop we just discussed. So, what

is the checkStop() message? Well as was alluded to earlier, it essentially serves to check

and see if a stop() message has been posted. When the ball is moving, the event handler

14

associated with the toggle button is written to post an asynchronous stop() message to the

BallThread object (or, all instances of BallThread, in the case of multiple simultaneous

bouncing balls). We have joined checkStop() with both move() and stop(). When a stop

message is posted, it will either match and steal the checkStop message in the queue, or

will sit there until the next time a checkStop message is posted. Notice there should

never be more than one checkStop message in the queue at a time, and in the time

between the removal of the checkStop message from the queue upon the matching of a

move with a checkStop message, and the placing of a new checkStop message on the

queue, there may be not be a checkStop message in the queue. This is not a problem, as

the call to stop() is asynchronous, and if it arrives before the new checkStop message is

posted, it will sit in the queue until the checkStop message is in fact posted.

At this point, the checkStop message that was previously used to complete the

15

problem is that the way chords are implemented in Comega, a thread may be notified that

a match has been made, but no guarantee is made that that match will be saved until the

thread is executed. The original Polyphonic C# paper gives the following illustration of

the problem we encounter,

class Foo {
void m1() & async s() & async t() {. . . }
void m2() & async s() {. . . }
void m3() & async t() {. . . }

}

and the following global execution trace, with four threads
running in parallel:

Thread 1. calls m1() and blocks.

Thread 2. calls m2() and blocks.

Thread 0. calls t() then s(), awaking Thread 1.

Thread 3. calls m3() and succeeds, consuming t().
Thread 1. retries m1() and blocks again. (Benton, et al. 22)

The problem here is that while Thread 1, which, in conjunction with Thread 0, completes

the first chord and Thread 1 is notified, but it does not execute right away. The thread

scheduler instead goes ahead and allows Thread 3 to call m3(). Thread 1 was notified,

but it is up to the notified thread to consume the messages from the queue, and since it

never got a chance to do that, Thread 3 was able to preempt Thread 1’s match and steal

the t() message. Once Thread 1 was finally able to execute, it looked back at the queue

and saw it no longer was able to execute, and was forced to block again.

The bouncing ball program basically benefits from a timing trick that prevents

this sort of stealing from happening, or really just makes it extremely unlikely. When

checkStop() is called before Thread.Sleep(), the stop message will almost always enter

during the execution of ball.move(), paint(), or during the Sleep(), when the move()

16

17

14) Thread 1 wakes up and calls move()
Thread 1 consumes move() and kill()
Thread 1 exits

1)
2)
3)
4)

Thread 1 is spawned
Thread 1 calls checkStop()
Thread 1 calls move()

Thread 0 calls start()

5)

6)
7)
8)

9)

10)

11)

12)
13)

Thread 1 consumes move() and checkStop()
Thread 1 calls ball.move()
Thread 1 calls ball.paint()
Thread 1 calls Thread.Sleep(5) and blocks

Thread 1 wakes up and calls checkStop()

Thread 1 calls move()
Thread 1 consumes move() and checkStop()

Thread 0 calls stop()

Thread 0 is notified and spawns
Thread 2
to execute the body of

18

scrapping the chords and using the original while() loop code. The use of the async

keyword may be preferable to some, but so far we are talking about a net difference of

one or two lines of code. Of course, lines of code do not tell us the whole story either.

The code for creating a thread in C# is very dense and unintuitive, especially compared to

the use of the async keyword. Let us examine a more meaningful example, and consider

options for making more complex solutions more intuitive as well.

The Unisex Bathroom problem is a common problem, found in almost all

introductory concurrent programming textbooks. The rules are relatively simple. There

is a single bathroom, with a finite number of stalls. It may be used by males or females,

but not by both at the same time. If the bathroom is empty, either sex may enter, but once

it is occupied, only members of the same sex may enter, and only then while there are

open stalls. If the bathroom is full, or is occupied by the opposite sex, the person

attempting to enter must wait in line. For the purposes of our first solution, we will not

really keep an orderly, first in, first out line, but more like a waiting room. This is

inefficient and unfair, but presents an interesting problem nevertheless.

The chorded solution to the unfair bathroom problem is interesting in its

intuitiveness and readability. We will define four chords to handle the major cases.

enterFemale(Person p) & open() & females(){ … }
enterFemale(Person p) & empty() & open() { … }
enterMale(Person p) & open() & males() { … }
enterMale(Person p) & empty() & open() { … }

Each of these methods is defined as being asynchronous using the async keyword. We

can literally read off the chords to understand the cases they handle. When we have a

female attempting to enter the bathroom, and there is an open stall, and the bathroom is

occupied by females, allow the female to enter. When we have a female attempting to

19

enter the bathroom, and there is an open stall, and the bathroom is empty, allow the

female to enter. Repeat these cases for the males. If we compare this to the semaphore-

based solution provided by Downey,

femaleLouie.lock (empty)
femaleMultiplex.wait ()

bathroom code here
femaleMultiplex.signal ()

femaleLouie.unlock (empty)

The solution is not longer or more complicated, but it requires a deeper consideration of

the possible cases to understand its correctness. The chorded solution simply defines the

cases and handles them as they arise.

The code inside of these chords requires a bit of explanation. In particular, the

use of the males() and females() messages is important. Immediately after each call to

one of the enterXXX chords is made, a males() or females() message is placed on the

queue. This works in an affirmative way, not so much working to prevent the opposite

sex from entering as much as it only allows the current sex to enter. This affirmative

quality is important, however, because it leads to a small loophole that can cause some

very big problems. The problem arises because there is no guarantee that the males() or

females() message will be cleared from the queue in a timely fashion. The body of the

exit method called by each person exiting the bathroom looks like this:

public void exit(Person.Gender gender)
{

open();
countWait();
count--;
if(count == 0)
{

empty();
if(gender == Person.Gender.Female)

clearFemales();
else

clearMales();
Console.WriteLine("Bathroom is empty");

20

}
countSignal();

}

Eventually, the exit thread that called empty() will get to its call of clearMales()

or clearFemales() to clear the old message. However, it may not happen for a long time,

if the thread scheduler decides to make that chord wait immediately after it consumes its

messages off the queue. It is also possible that the clearGender() & gender() chord will

be continually pre-empted by the corresponding enterGender() & open() & gender()

chord. We showed back in the Bouncing Ball example that there is no guarantee about

how chords will act when there is a possibility of multiple chord completions.

Let’s walk through an example of how we may end up in an undesired state with

the current attempt at a solution to the Unisex Bathroom Problem. Say that the bathroom

is currently occupied by males, and a thread has just consumed enterMale(), males(), and

open() messages, but then the scheduler forces the thread to block. If this occurs, and

everyone currently in the bathroom leaves, a condition will occur where the empty()

message will be posted and a female may be allowed to enter the bathroom and post her

own affirmative females() message. Say this happens, and then finally the first thread

that we had intended to put up its males() message right away is activated. Now we have

both males() and females() messages up, and mayhem in the bathroom. Eventually, the

thread executing the exit() method will post the clearMales() message, but, as with the

stop() & checkStop() issue above, there is no guarantee that the clearMales() & males()

chord will execute immediately, leaving open the possibility of continued mingling of

both genders in the bathroom.

22

order to get the most out of chords, we want greater control over the order of

consumption than the current Comega implementation allows.

In the particular case, first-in first-out will not cut it. There may be a number of

enterGender() messages that are quite old, and we do not care about them. We want to

give the clearMales() and clearFemales() chords a priority level greater than

enterGender() & open() & gender() chords and guarantee that clearMales() and

clearFemales() chords are always consumed first. We may achieve this through

assigning methods weights, or simply assigning each chord a priority value as a whole.

In this case, it would suffice to give the chords clearMales() & males() and

clearFemales() and females() a priority level of one, and all other chords a priority level

of zero. This, coupled with the object lock, would guarantee the correctness of this

solution to the Unisex Bathroom Problem.

Bouncing Ball Redux

Before we move on, it would also be helpful to note that the Bouncing Ball

problem, which we described in detail, would greatly benefit from some type of priority

enhancement of the existing chord implementation as well. As was previously stated, the

problem with the stop() & checkStop() chord was that that chord was never guaranteed to

execute ahead of move() & checkStop(). A priority value idea that gave the stop() &

checkStop() chord a higher priority would work here, but even more simply, a first-in

first-out guarantee would work as well. In the worst case, stop() would enter

immediately after move(), but it would be guaranteed to be the oldest chord in the queue

on the next call to checkStop(). In any case, either solution would work, but if we are

23

able to implement either one of them, the priority value solution seems to be more

flexible. Let us go back to the Unisex Bathroom, however.

An Attempt at Fairness

We should not be satisified with the solution we’ve constructed for the Unisex

Bathroom Problem. It is a very unfair solution that can quickly lead to starvation for one

gender. There is no mechanism to stop one gender from dominating the bathroom,

continually replacing each other without allowing the opposite gender to get its foot in

the door, so to speak. One very simple idea for preventing this type of behavior is to, as

soon as a member of the sex opposite that of the current bathroom occupant enters the

line (or “waiting room,” a more apt analogy), everyone is prevented from entering the

bathroom and the opposite sex is given the chance to take control. In a balanced-gender

scenario, this may lead to a lot of see-sawing; it is not particularly efficient. It is a

relatively simple improvement, however, so let us take a look anyway.

To achieve the desired behavior, we only need to add three chords:

enterFemale(Person p) & males() { //code }
enterMale(Person p) & females() { //code }
private void waitEmpty() & empty() { //no code }

The purpose of the first two chords is to remove the affirmative sign from the door,

without replacing it with an empty() sign. This has the effect of not allowing any of the

other four entry chords to execute any more. Once that is done, we want to wait for the

bathroom to empty out, then post the new gender’s message on the queue, allowing

threads/people of that gender to enter. The bodies of the first two chords are essentially

identical, and consist of a call to the blocking method waitEmpty(), followed by posting

their own gender() message and then repeating the call to enterGender(). The body of the

24

waitEmpty() & empty() chord is blank, as it serves only to remove the empty() message

from the queue.

In order for the first two chords to properly “steal” the gender() messages off the

queue, we want to go back to the previous priority discussion. An enterMale() &

females() chord may (and almost certainly will, at some point) be on the queue at the

same time as an enterFemales() & females() & open() chord. However, the rules of

fairness we are working with state that as soon as the member of the opposite gender

arrives, everyone is locked out until the bathroom empties and the opposite gender is

given a chance to control the bathroom. This means that we want to always consume the

enterMale() & females() chord instead of the enterFemales() & females() & open() chord.

Therefore, in a chord implementation with our priority idea, we want to give the former

chord some arbitrarily higher priority value than the latter.

The call to waitEmpty() within the first two chords above provides two functions:

it blocks the entering thread until the bathroom empties out, then consumes the empty()

message. Again, we run into a situation where an important message may find itself as

part of more than one possible chord. As a result, we go back to the priority idea we

were discussing earlier. The solution is very similar to the clearMales() solution. We

simply assign the waitEmpty() & empty() chord a higher priority than the enterGender()

& empty() & open() chord, to guarantee the proper behavior, i.e. we always want empty()

to match with waitEmpty(), if waitEmpty() is in the queue at the time. The use of the

suggested priority extension in both of these cases makes writing a fairer solution to the

Unisex Bathroom Problem much easier.

The Smokers’ Problem and the Lack of a Novel Solution

25

The smokers’ problem in concurrent programming is defined as something like

this: there are three smokers, and a dealer that has three ingredients necessary to create a

cigarette. The ingredients are paper, tobacco, and matches. We assume that the dealer

has an unlimited quantity of each of these materials. Each smoker has one of the

ingredients, and we want that smoker to pick up the two ingredients he needs when the

dealer puts them on the table. In the case that the dealer knows what which smoker has

which ingredient and takes the initiative to notify that smoker, the solution becomes

trivial using semaphores. Essentially, the smoker code will be something like:

matches.wait();
dealer.getTobacco();
dealer.getPaper();

The dealer, in turn, will simply call a matches.notify()when it decides to make

tobacco and paper available. Rather than putting the materials out for anyone, this

version only notifies the smoker the dealer knows needs the materials he is about to make

available. We can mirror this solution using chords, in which case the trivial solution

looks something like this:

when tobacco() & paper()
{

SmokerA.notify();
}

Again, the code is essentially identical for the two other smokers, and again we see that

we are in a situation where the dealer is aware of exactly which smoker is looking for

what, rather than the dealer merely presenting ingredients to the smokers for them to take

themselves. It’s nice to be able to read “when tobacco and paper are available, notify a

particular smoker,” it is certainly more readable than the semaphore solution. It is not,

however, particularly novel compared to using semaphores.

26

Only when we make the smokers themselves check the table do we encounter a

dangerous deadlock situation that we need some amount of cleverness to resolve.

The naïve non-solution that results in deadlock looks like this:

Smoker with matches:

tobacco.wait ()
paper.wait ()
agentSem.signal ()

Dealer A:

agentSem.wait ()
tobacco.signal ()
paper.signal ()

This is a classic deadlock situation. Downey explains the situation in his Little Book of

Semaphores,

Imagine that the agent puts out tobacco and paper. Since
the smoker with matches is waiting on tobacco, it might be
unblocked. But the smoker with tobacco is waiting on
paper, so it is possible (even likely) that it will also be
unblocked. Then the first thread will block on paper and the
second will block on match. Deadlock! (Downey, 103)

In order to arrive at a solution to the non-trivial problem using chords, we have

two options. On the one hand, since we know how to use chords to write our own

semaphores, we can essentially copy Downey’s solution. We’re more interested in the

possibility of a non-trivial solution that is new and novel. In order for this to be possible,

the solution must make use of the queuing feature of chords. In particular, we might

envision a Table class that uses chords like this:

when putTobacco()
& putPaper()
& getTobacco(Smoker s)
& getPaper(Smoker s)

{

27

s.notify();
}

Right away, however, we run into a grammar problem. We have two instances of the

Smoker class with the same name, “s.” Of course, we really want these to be the same

instances, so maybe that’s not such a bad thing. When we think about the smoker with

matches and the smoker with paper both calling table.getTobacco(), however, we realize

that there is a serious problem. We cannot guarantee that the queue manager will match

the call to getTobacco() by the smoker with matches with the call to getPaper() by the

smoker with matches. In fact, if the smoker with paper calls getTobacco() after the

smoker with matches calls it, and before he calls getPaper(), we expect that the queue

manager will identify and run the pattern. We need a way of making sure that each pair

of calls made by each smoker are made atomically, and this basically brings us back to

the traditional semaphore solution, which looks like this:

tobacco.wait ()
mutex.wait ()

if (isPaper)
isPaper = false
matchSem.signal

else if (isMatch)
isMatch = false
paperSem.signal

else
isTobacco = true

mutex.signal ()

It does not seem that we will be able to improve on this solution using chords.

The H2O Problem and Joining a Method with Itself

Programming with chords is much better suited for the H2O problem than the

smokers problem. Basically, this is a very simple problem with just a couple of rules.

We have a barrier and two types of threads allowed to enter the barrier: oxygen and

hydrogen. When two hydrogen threads and an oxygen thread are all present in the

28

barrier, the three threads are all supposed to call “bond()” and exit the barrier. Using

chords, a first instinct might be to construct something that looks like this:

public void enterOxygen(Oxygen o)
& enterHydrogen(Hydrogen i)
& enterHydrogen(Hydrogen h)

{
//call bond

}

However, at least in the Polyphonic C# implementation, it is grammatically incorrect to

join a method with itself. Luckily, there is a very simple workaround.

when enterHydrogen(Hydrogen h) & enterOxygen(Oxygen o) & done()
{

waitingForHydrogen(h, o);
}

public void waitingForHydrogen(h2, o) & enterHydrogen(Hydrogen h)
{

//call bonds
done();

}

Rather than trying to join all three events that are necessary to bond a water molecule, we

create a new event and split the four events into two pairs. The new event,

“waitingForHydrogen,” is now triggered by a single hydrogen and oxygen pairing. We

do not care about the order in which the hydrogen and oxygen events occur, because all

the chord mechanism queues them all for us. The way the language is constructed

guarantees that when we have two hydrogen events and an oxygen event, a blocking call

on the body of waitingForHydrogen() will be executed. The blocking part is important,

because the last rule of the H2O problem is that we want to guarantee that the calls to

bond() all form a new water molecule. That is to say, we want to avoid an extra

hydrogen from another thread calling bond() before oxygen has a chance to complete the

molecule. The done() message ensures that no other molecule is formed before the

29

previous atoms are finished bonding. In the previous theoretical example, we used the

done() message to enforce this rule. Another solution would be something like,

when enterOxygen(Oxygen o)
& enterHydrogen(Hydrogen i)
& enterHydrogen(Hydrogen h)

{
bondAll(o, i, h);

}

public void bondAll(Oxygen o, Hydrogen i, Hydrogen h)
{

lock(this)

o,fromepreln wo
Tm m /TTbonmaturely by Tm n woexample, we used the prrelowedmple, we used the

30

the chord’s body. In the H2O example, we might use such a feature in the following

way,

when enterOxygen(Oxygen o) & enterHydrogen(Hydrogen h) [2]
{

bondAll(o, i, h);
}

The absence of an attribute from enterOxygen() would imply to the chord matching

algorithm a single call, and any positive, non-zero integer would be a valid value for an

attribute following a method we wish to join with itself.

Taking a careful look at this scenario, however, we see a recurrence of a problem

we ran into in the smokers’ problem. While the body of the chord above contains a call

to bondAll with parameters o, i, and h, the variable i has disappeared! Whoops. This

should also be a fairly trivial problem to solve, however. One solution would be to

follow suit of scripting languages like Perl that use parameter collections, and make each

parameter actually a reference to a collection of the parameters of the same name. For

instance, in the case of the H2O problem,

when enterOxygen(Oxygen o) & enterHydrogen(Hydrogen h) [2]
{

bondAll(o, h[0], h[1]);
}

This solution will seem obvious to those familiar with less strongly-typed languages, but

may not be intuitive otherwise. The transformation in type of the “h” variable is a

possible cause of confusion for someone reading this code, but so long as the behavior is

well-documented, it could be an acceptable solution.

The River Crossing Problem

31

This problem is similar to the previous one, but contains a new twist. The

situation is phrased like this: we have a dock and some rowboats, and people want to use

the rowboats to cross from Seattle to Redmond. There are two types of people who use

this dock: Microsoft serfs and Linux hackers. Each rowboat has four seats. A boat may

not contain only a single serf or a single hacker. Rather, boats may contain all serfs, all

hackers, or two serfs paired with two hackers. This is, so the story goes, so the lonely

serf or hacker is not beaten up on the trip across while being outnumbered on the boat. A

half-and-half boat keeps the peace because there would be no clear winner.

Again, our first impulse using chords would be grammatically incorrect. We

might be tempted to try something like,

when enterSerf(Serf s1)
& enterSerf(Serf s2)
& enterSerf(Serf s3)
& enterSerf(Serf s4)

{
//board boat

}

And,

when enterSerf(Serf s1)
& enterSerf(Serf s2)
& enterHacker(Hacker h1)
& enterHacker(Hacker h2)

{
//board boat

}

Of course, the situation of a boat full of hackers is identical to the boat full of serfs. Now,

it is very tempting to try to apply the solution to this situation. However, as we try

different ideas for breaking down the sets of events into other events, it becomes clear the

workaround found in the H2O problem is not a general solution to problems that are

well-suited to joining a method with itself. The biggest problem is another grammar rule

32

that makes sense when examined: a chord cannot be a subset of another chord. For

instance, we might want to say,

when enterSerf()
{

waitForSecondSerf();
}
public void waitForSecondSerf() & enterSerf()
{

waitForThird();
}
public void waitForThird() & enterSerf()
{

waitForFourthSerf();
}
& enterHacker()
{

waitForFourthHacker();
}

public void waitForFourthSerf() & enterSerf()
{

//load
}
public void waitForFourthHacker() & enterHacker()
{

//load
}

The problem with this partial solution is that enterSerf() cannot be an event by itself as

well as part of another chord. If this were allowed, there could be no guarantee that any

of the other chords would ever execute. The language would be explicitly allowing a

situation we know leads directly to a starvation problem. Chords do not guarantee
9tisay,

33

must apply without regard to the quantity attribute. For instance, the following chord

definitions,

when method1() & method2() {}
when method1() [2] & method2() [3] {}

34

synchronized public void m1() {}

This is simply a shorthand way of writing,

public void m1() { synchronized(this) {} }

In Java and C#, we do not care if we have entered the method and then blocked, or

blocked before we enter the method. Instead, executing a chord body has the effect of

consuming messages that we may not really want to consume if we have to block right

away. With this idea of not consuming messages if we will be forced to block, we might

think of the synchronization code as looking more like,

synchronized(this) {
public void m1() & m2() {}

}

We invert the synchronization with the chord, because we only want to consume the

chord if we can first get a lock on the object. Otherwise, we want to leave the messages

on the queue for others.

Conclusion

With a couple of simple extensions, chords allow us to solve problems in a more

straight-forward and easily-understood way than complicated semaphore

synchronization. Various priority ideas, including explicit priority values and first-in

first-out, give us greater control over the resolution of conflicts between multiple chords

fighting over the same method in a queue. Allowing a method to join with itself, subject

to certain restrictions, maintains the integrity of the grammar while making solutions

certain types of problems, like the river crossing problem and the H2O problem, nearly

trivial. Chords, particularly with the suggested extensions, allow us to solve a particular

35

class of problems elegantly, while the remaining swath of concurrency problems are at

worst no more complicated than they were previously using semaphores.

36

Appendix A – Common Bouncing Ball Code (Windows Form and Ball classes)

(Note: There are two snippets of code that differ in the BouncingBallForm class. The C#
implementation is in bold and the Comega implementation is in italics. The two
implementations are mutually exclusive; only one or the other is used, never both. The
Ball class is identical in both cases.)

public class BouncingBallForm : Form
{
 Button test, newBalls;
 Button bye;
 bool drawing = false;

 ArrayList balls = new ArrayList();

 public ComegaForm () {

 this.test = new System.Windows.Forms.Button();
 this.SuspendLayout();

 this.test.Location = new System.Drawing.Point(8, 300);
 this.test.Name = "Test";
 this.test.TabIndex = 0;
 this.test.Text = "Start Balls";

 this.test.Size = new System.Drawing.Size(80, 24);

 this.newBalls = new System.Windows.Forms.Button();

 this.newBalls.Location = new System.Drawing.Point(100, 300);
 this.newBalls.Name = "NewBalls";
 this.newBalls.TabIndex = 0;
 this.newBalls.Text = "New Ball";

 this.newBalls.Size = new System.Drawing.Size(80, 24);

 test.Click += new EventHandler(this.OnButtonClick);
 newBalls.Click += new EventHandler(this.createNewBall);

 test.Visible = false;
 newBalls.Visible = true;

 this.Controls.AddRange(new Control[]{ test });

 this.Controls.AddRange(new Control[]{ newBalls });

 }

 void createNewBall(object sender, EventArgs e)
 {

 Graphics g = this.CreateGraphics();
 Controller ball = new Controller(g);
 balls.Add(c);
 if(drawing)

 {
//C# version
Thread t = new Thread(new ThreadStart(ball.start));

37

t.Start();

//Comega version
ball.start();

 }
 }

 void OnButtonClick(object sender, EventArgs e)
 {

38

protected Color colour = Color.Blue;
private Graphics g;

// constructor for new ball
public Ball(Point p, int rad, Color col, Graphics h)
{

location = p;
radius = rad;
colour = col;
g = h;

}

// methods that set attributes of ball
public void setColor(Color newColor) { colour = newColor;
}
public void setRadius(int rad) { radius = rad; }
public void setLocation(Point p) { location = p; }
public void setMotion(double dx, double dy)
{

changeInX = dx;
changeInY = dy;

}

// methods that get attributes of ball
public int getRadius() { return radius; }
public Point getLocation() { return location; }
public Color getColour() { return colour; }

// methods to move the ball
public void reflectVert() { changeInX = -changeInX; }
public void reflectHorz() { changeInY = -changeInY; }
public void moveTo(int x, int y)
{

location.X = x;
location.Y = y;

}
public void move() {

lastLocation = location;
location.Offset((int)changeInX, (int)changeInY);
if(location.X < g.VisibleClipBounds.Left || location.X >

g.VisibleClipBounds.Right)
{

reflectVert();
}
if(location.Y < g.VisibleClipBounds.Top || location.Y >

g.VisibleClipBounds.Bottom)
{

reflectHorz();
}

}

// method to display ball
public void paint()
{

//clear the old ball
g.FillEllipse(new SolidBrush(Color.White),

39

lastLocation.X - radius,
lastLocation.Y - radius,
2*radius,
2*radius);

g.FillEllipse(new SolidBrush(colour),
location.X - radius,
location.Y - radius,
2*radius,
2*radius);

}
}

40

Appendix C – C# Implementation of Controller class

public class Controller
{

bool go;
Ball ball;

public Controller(Graphics g)
{

ball = new Ball(new Point(0,0), 10, Color.Blue, g);
ball.setMotion(1, 1);

}

public void start()
{

go = true;
while(go)
{

ball.move();
ball.paint();
Thread.Sleep(5);

}
}

public void stop()
{

go = false;
}

}

41

Appendix D – Comega Implementation of Controller class

public class Controller
{

public async checkStop();
public async kill();
public async start();

bool go;
Ball ball;
public Controller(Graphics g)
{

ball = new Ball(new Point(0,0), 10, Color.Blue, g);
ball.setMotion(1, 1);

}

when start()
{

checkStop();
move();

}

private void move() & checkStop()
{

checkStop();
ball.move();
ball.paint();
Thread.Sleep(5);
move();

}

 & kill()
{
}

public async stop() & checkStop()
{

kill();
}

}

42

Bibliography

Benton, Nick, Luca Cardelli, and Cédric Fournet. “Modern Concurrency Abstractions
for C#.” ACM Transactions on Programming Languages and Systems. 26 (2004):
769–804.

Downey, Allen B. Little Book of Semaphores. 2003.
<http://allendowney.com/semaphores/downey03semaphores.pdf>

Wood, Tim. A Chorded Compiler for Java. London: Imperial College, 2004.
<http://www.doc.ic.ac.uk/teaching/projects/Distinguished04/TimWood.pdf>

