Department of Physics Faculty

David Broido

Professor of Physics

Selected Publications

  • "Phonon-Phonon Interactions in Strongly Bonded Solids:听 Selection Rules and Higher-Order Processes,听N.K. Ravichandran and D.A. Broido,听Physical Review X听10, 021063 (2020
  • "Coupled transport of phonons and carriers in semiconductors: A case study of n-doped GaAs", N. H. Protik and D. A. Broido, Physical Review B 101, 075202 (2020)听
  • "Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride", 飩诽 Ke Chen, Bai Song, Navaneetha K. Ravichandran, et al., Science (2020).
  • "Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport", Chunhua Li, Navaneetha K. Ravichandran, Lucas Lindsay, and David Broido, Physical Review Letters听121, 175901 (2018).
  • "Unusual high thermal conductivity in boron arsenide bulk crystals", Fei Tian, Bai Song, Navaneetha K. Ravichandran, et. al., Science 361, 582-585 (2018)."
  • "Thermodynamic Evidence of Proximity to a Kitaev Spin Liquid in Ag3LiIr2O6", Faranak Bahrami, William Lafargue-Dit-Hauret, Oleg I. Lebedev, Roman Movshovich, Hung-Yu Yang, David Broido, Xavier Rocquefelte, and Fazel Tafti, Physical Review Letters 123, 237203 (2019).
  • "Non-monotonic pressure dependence of the thermal conductivity of boron arsenide", Navaneetha K. Ravichandran & David Broido, Nature Communications 10 , 827 (2019).
  • "Unified first-principles theory of thermal properties of insulators", Navaneetha K. Ravichandran and David Broido, Physical Review B98, 085205 (2018).
  • "First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?鈥, L. Lindsay, D. A. Broido and T. L. Reinecke, Physical Review Letters听111, 025901 (2013).
  • "First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?鈥, L. Lindsay, D. A. Broido and T. L. Reinecke, Physical Review Letters听111, 025901 (2013).
  • 鈥淭hermal Conductivity and Large Isotope Effect in GaN from First Principles鈥, L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Review Lett. 109, 095901 (2012).
  • 鈥淗eavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe(1-y)Se(y)鈥,听 Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 134, 10031 (2012).
  • 鈥淭hermal conductivity of diamond nanowires from first principles鈥, Wu Li, Natalio Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Phys. Rev. B 85, 195436 (2012).
  • 鈥淟attice thermal conductivity of (Bi1鈭抶Sbx)2Te3 alloys with embedded nanoparticles鈥, N. A. Katcho, N. Mingo, and D. A. Broido, Phys. Rev. B 85, 035436 (2012).
  • 鈥淩ole of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys鈥, A. Kundu, N. Mingo and D. A. Broido, Phys. Rev. B 84, 125426 (2011).
  • 鈥淒iameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit鈥, L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 82, Rapid Communications, 161402 (2010).
  • 鈥淔lexural phonons and thermal transport in graphene鈥, L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 82 Editor鈥檚 Selection, 115427 (2010).
  • 鈥淥ptimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene鈥, L. Lindsay and D. A. Broido, Physical Review B 81, 205441 (2010).
  • 鈥淭wo-Dimensional Phonon Transport in Supported Graphene,鈥 J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213 (2010).
  • 鈥淚ntrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities of Si and Ge,鈥 A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).
  • 鈥淐luster Scattering Effects on Phonon Conduction in Graphene,鈥 N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, Phys. Rev. B 81, 045408 (2010).
  • Ab Initio Theory of the Lattice Thermal Conductivity in Diamond,鈥 A. Ward, D. A. Broido, Derek A. Stewart, and G. Deinzer, Phys. Rev. B 80, Editor鈥檚 Selection, 125203 (2009).
  • 鈥淟attice Thermal Conductivity of Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and Phonon-Phonon Scattering Selection Rules,鈥 L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 80, 125407 (2009).
  • "Phonon Transmission Through Defects in Carbon Nanotubes from First Principles," N. Mingo, D. A. Stewart, D. A. Broido, and D. Strivastava, Phys. Rev. B 77, 033418 (2008).
  • "Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices," A. Ward, and D. A. Broido, Phys. Rev. B 77, 245328 (2008).
  • "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).
  • "Theory of Thermoelectric Power Factor of Nanowire-Nanocomposite Matrix Structures," D. A. Broido, and N. Mingo, Phys. Rev. B 74, 195325 (2006).
  • "Carbon Nanotube Ballistic Thermal Conductance and Its Limits," N. Mingo, and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).
  • "Lattice Thermal Conductivity of Silicon from Empirical Interatomic Potentials," D. A. Broido, A. Ward, and N. Mingo, Phys. Rev. B 72, 014308 (2005).
  • "Length Dependence of Carbon Nanotube Thermal Conductivity and the 鈥漃roblem of Long Waves,鈥 N. Mingo, and D. A. Broido, Nano Lett. 5, 1221 (2005).
  • "Lattice Thermal Conductivity of Superlattice Structures," D. A. Broido, and T. L. Reinecke, Phys. Rev. B 70, Rapid Communications, 081310 (2004).
  • "Lattice Thermal Conductivity Crossovers in Semiconductor Nanowires," N. Mingo, and D. A. Broido, Phys. Rev. Lett. 93, 246106 (2004).
  • "Thermoelectric Transport in Superlattices," D. A. Broido, and T. L. Reinecke, in Semiconductors and Semimetals 71: Overview of Current Advances in Thermoelectric Materials, Chapter 2, ed. T. Tritt (2001).